
So�ware Development (cs2500)

Lecture 11: Writing Classes

M.R.C. van Dongen

October 22, 2010

Contents
1 Introduction 1

2 Classes andObjects 2

3 Anatomy of a Class 2
3.1 Variable and Method Declarations . 2

3.2 this . 3

3.3 Basic Declarations . 4

3.4 Example . 5

3.5 Constructors . 9

4 Encapsulation 9

5 Getters and Setters 10

6 Scope 11

7 Lifetime 12

8 ForWednesday 13

9 Acknowledgements 13

1 Introduction
�is lecture corresponds to the start of Chapter 4 but the presentation is di�erent. �e main objectives

are as follows.

1

• Discuss the structure and content of class de�nitions;

• Study the relationship of object state and instance data;

• Learn how to use visibility modi�ers to protect methods and data;

• Examine the structure and purpose of constructors; and

• Write a class that represents a die.

2 Classes andObjects Revisited
Remember that a class is a blueprint of its instances. Here the instances of the class are the objects which

are created by the class.

• �e class represents the concept of the object.

• Each object created by the class is a realisation of the concept.

• Each object has as a state, which is de�ned by the object’s attributes.

• �e class establishes that each object has these attributes.

• Each object has behaviours. Here the behaviour are the instance methods of the class. Some

behaviours may a�ect the object’s state.

• �e class de�nes the object’s methods.

3 Anatomy of a Class

3.1 Variable andMethodDeclarations
Classes contain variable and method declarations. �ere are two kinds of declarations: class or instance

declarations. Instance variables and instance variables are owned by objects. �e word ‘instance’ stems

from the fact that each object is an instance of the class. Class variables and class methods are owned by

the class.

Instance variable: Instance variables de�ne the attributes that are owned by the objects. For each attribute

declaration in the class, each newly created object is given its own variable to represent the attribute’s

current value. If there are n instance variable declarations then each new object gets n di�erent

variables to represent their values. Di�erent objects may have di�erent values for the same attribute.

Instance variables can only be accessed using an object reference:

‘〈object reference〉.〈attribute〉’ .

2

Class variable: Class variables de�ne the attributes that are owned by the class. Each class variable

declaration corresponds to a single variable. �ese variables can only be accessed using the class:

‘〈class name〉.〈attribute〉’ .

Class variables are di�erent from instance variables. For example, changing the value of a class

variable has a global e�ect for the whole class.

Instances method: Instance methods are methods which are owned by the objects. �ese methods can

only be accessed using an object reference:

‘〈object reference〉.〈method〉(〈arguments〉)’ .

Instance methods can see all class variables and class methods of the current class. In addition they

can see their object’s instance variables and instance methods. Finally, each instance method has

access to its object, which is the object which called the instance method. For convenience we shall

refer to this object as ‘the current object’ or as ‘this’. Inside the instance method the current object

can only be accessed indirectly. To access the object, you use the Java keyword ‘this’, which acts as

the object reference to the object. �is is explained in the next subsection.

Class method: Class methods de�ne methods which are owned by the class. Each class method declara-

tion correspond to a single method which is owned by the de�ning class. �ese methods may be

accessed anywhere using the class:

‘〈class name〉.〈method〉(〈arguments〉)’ .

However, inside the de�ning class you may omit the ‘〈class name〉.’ part. Class methods only

have access to the class attributes and class methods.

3.2 this

�ere are two techniques to access an object’s instance variables and instance methods from within

the object’s instance methods. �e techniques to access instance variables and methods are equivalent.

However, one technique uses the Java keyword ‘this’, whereas the other technique does not. �e method

that uses this is more verbose and is not commonly used. However, there is a case where it is needed.

�is is explained further on. �e following explains the di�erence between the two techniques.

with: When you write ‘this’ in a Java instance method, the ‘this’ works just as an object reference.

Speci�cally, the value of ‘this’ is the reference to the object that called the method. For example, if

〈reference〉 is a reference to the object that called the method and if ‘〈reference〉.〈method〉(
〈arguments〉)’ instructed the object to carry out the method call, then the value of ‘this’ inside

the method is the same as that of 〈reference〉. So this and 〈reference〉 refer to the same object.

In short ‘this’ corresponds to the “current” object. Since this is an object reference, writing

‘this.〈instance variable〉’ and ‘this.〈instance method〉(〈arguments〉)’ works as expected.

3

without: �e more commonly used technique to access instance variables and instance methods inside in-

stance methods does not use ‘this.’, so you write ‘〈instance variable〉’ or ‘〈instance method〉(
〈arguments〉)’.

However, there is one case where you need the ‘this.’ notation. �is case arises if an instance method

has a formal parameter or variable whose name shadows that of an instance variable. If 〈name〉 is the name

of the formal parameter or variable, then 〈name〉 and ‘this.〈name〉’ are di�erent. Speci�cally, 〈name〉 is
the variable or parameter and ‘this.〈name〉’ is the instance variable. �e following is an example.

public class DontDoThis {
private final int value;

public void possible() {
int value = 1; // grand.

}

public void alsoFine(int value) {
value = 1; // grand.

}

public void impossible(int argument) {
value = 1; // Noooooooooo!

}
}

Don’t Try this at Home

If you try to compile this you will get a compile-time error because Java won’t let you assign a value

to the final attribute value inside the method impossible().

In a similar vein, you sometimes need to use the ‘〈class name〉.’ notation to distinguish between a

class attribute and a variable or formal parameter inside a method.

public class Example {
private static final int value = 1;

public static void example() {
int value = 2;
System.out.println((2 * Example.value) + " = " + value);

}
}

Java

3.3 Basic Declarations
�e following shows the basic form of instance variable and instance method declarations.

4

// Instance variable declaration:
〈type〉 〈attribute〉;

// Instance method declaration:
〈return type〉 〈method〉(〈formal parameter list〉) {
〈body〉

}

Java

By adding the modi�er ‘static’ you can “turn” an instance variable declaration “into” a class variable

declaration. Likewise, adding the modi�er ‘static’ to an instance method declaration “makes” it a class

method declaration.

// Class variable declaration:
static 〈type〉 〈attribute〉;

// Class method declaration:
static 〈return type〉 〈method〉(〈formal parameter list〉) {
〈body〉

}

Java

3.4 Example
In this section we shall implement a class called Die. A Die object represents a single die. �e class de�nes

instance methods which allow us to roll the die and get its current face value.

�e following is the basic structure of the class. Usually the attributes are de�ned at the start of the

class, but this is not a requirement. Remember that the name of the class is the same as the basename of

the �le it is in.

//***
// File: Die.java
// Author: Java Joe
//
// Represents single die.
//***

〈Import statements.〉

public class Die {
〈Variable declarations.〉
〈Method declarations.〉

}

Java

�e following implements the variable declarations.

5

import java.util.Random;

public class Die {
// Class variables:
private static final Random random = new Random();
private static final int MAX_FACE_VALUE = 6;
// Instance variable:
private int faceValue; // Current face value.

〈Method declarations.〉
}

Java

Attaching the modi�er ‘private’ to a variable or method declaration prohibits references to the

variable or method from outside the class Die. �is is good so�ware engineering practice because it

increases class robustness, �exibility, and extensibility. We shall see more about this later.

Notice that the primitive type variable ‘MAX_FACE_VALUE’ is a constant. It is interesting to notice that

it is spelled using upper case letters. �is is a common convention among Java programmers, which

makes it easier to recognise constant primitive type variables.

By initialising the class variables as part of the class variable declarations these variables are initialised

when the Die class is created.

We shall now implement the methods. �e following implements one of the most important methods:

the constructor method. You use the constructor method each time you construct a new Die object.

Constructing a new Die object is done with new. Writing ‘new Die()’ creates the new Die object and

returns a unique reference to the object. �e main purpose of the constructor method is to initialise the

object’s instance variables. In our case, there’s only one: faceValue. Java primitive type valued numeric

attributes which are not explicitly initialised are initialised to zero. Since zero is not a meaning face value

for Die objects we shall assign faceValue an allowed value. Quite arbitrarily we assign it the value 1.

//---
// Constructor: Sets up the initial default face value.
//---
public Die() {

faceValue = 1;
}

Java

Note that we really should have used a constant variable to initialise the variable faceValue to its

default value. For example, the following is much clearer because it doesn’t use the magic constant 1 inside

the method de�nition.

6

private static final int INITIAL_FACE_VALUE = 1;
//---
// Constructor: Sets up the initial default face value.
//---
public Die() {

faceValue = INITIAL_FACE_VALUE;
}

Java

You may also declare constructors with arguments. �ese are useful if you want to initialise the new

object’s attributes with provided values or, more generally, initialise them with values which are computed

from the arguments.

�e keyword ‘this’ can also be used inside constructor methods. �is is a common idiom if the

name of one of the arguments of the constructors shadows that of an instance variable. �e following

demonstrates the technique.
1

//---
// Constructor: Sets up the explicit face value.
//---
public Die(int faceValue) {

this.faceValue = faceValue;
}

Java

�e following implements the �rst instance method. �e main purpose of this method is to roll

the current object’s die and save the resulting face value by assigning it to the object’s instance variable

faceValue.

//---
// Rolls the die.
//---
public void roll() {

faceValue = 1 + random.nextInt(MAX_FACE_VALUE);
}

Java

Note that the statement inside the instance method ‘void roll()’ refers to the instance variable

faceValue of the “current” object: the object that called the method roll(). Page 3 explained that

there are two programming technique to access instance variables and instance methods inside instance

methods. �e technique of programming in the previous example does not use the keyword ‘this’.

However, we could have also used the other technique. �e following shows how this is done.

1
For simplicity we assume that the argument of the constructor is a proper face value.

7

//---
// Rolls the die.
//---
public void roll() {

this.faceValue = 1 + random.nextInt(MAX_FACE_VALUE);
}

Java

�is form is more verbose, not very common, but perfectly valid.

�e following implements the next instance method. It is used to get the object’s (the die’s) current

face value.

//---
// Returns current face value.
//---
public int getFaceValue() {

return faceValue;
}

Java

�e following implements the last method in our class. �e purpose of this method is to compute the

current face value as a String.

//---
// Returns string representation of face value.
//---
@Override
public String toString() {

return Integer.toString(faceValue);
}

Java

Remember from Lecture 10 that each class is a subclass of the Object class. As such, each subclass

inherits the methods that are de�ned in the Object class. One of these inherited methods is the instance

method ‘String toString()’. �e inheritance mechanism allows subclasses to inherit a default be-

haviour by reusing the default implementation of their superclass. We’ve seen this mechanism in Lecture 6

where the Square, Triangle, and Circle classes inherited the default ‘rotate()’ and ‘playSound()’

behaviour. �e inheritance mechanism is useful because there is no need to re-implement inherited

behaviour.

For Die objects the default behaviour of the instance method ‘String toString()’ (as provided by

the Object class) is not particularly useful. It would be much more meaningful if toString() returned

the object’s current face value as a String. To accomplish this behaviour we have to override the method

toString. Overriding the method means implementing a more speci�c (as opposed to the default) object

behaviour.

To err is human. To make sure we really, really, really override the method ‘String toString()’ in

our program we added the magic spell ‘@Override’ just before the de�nition of the overriden method.

8

Adding the spell instructs the compiler to report an error if the overridden method is not known — such

errors frequently happens as a result from typos. Without the magic spell such errors may go unnoticed

for a long time. However, with the spell such errors are detected at compile time.

With the current implementation of our Die class we may use it as follows.

public class Casino {
public static void main(String[] args) {

Die die1 = new Die(); // construct new Die object.
Die die2 = new Die(); // construct another Die object.
while (die1.getFaceValue() == die2.getFaceValue()) {

die1.roll(); // Roll the first Die.
die2.roll(); // Roll the second Die.

}
// Print final face values.
System.out.println("Player 1 eventually got " + die1 + ".");
System.out.println("Player 2 eventually got " + die2 + ".");
// Announce winner.
int winner = die1.getFaceValue() < die2.getFaceValue() ? 2 : 1;
System.out.println("The winner is player " + winner + ".");

}
}

Java

It is important to notice that the two statements that print the �nal face values use the Die object

reference variables die1 and die2 in combination with String concatenation. When Java sees an object

reference, 〈reference〉, in a situation like this it substitutes ‘〈reference〉.toString()’ for 〈reference〉.
Since we overrode the method toString() in the Die class, this inserts the object’s current face value,

which is exactly what we need.

3.5 Constructors
Constructors do not have a return type. �is is why they do not have a return statement. Constructors

may also take arguments. Java automatically initialises instance variables. �e default values are the same

as for array entries. So int attributes are initialised to 0, double attributes to 0.0, object attributes to

null, and so on. However, despite this default initialisation mechanism, it is considered good practice to

explicitly initialise instance variables in a constructor method.

4 Encapsulation
Objects should be self-governing. �is means their instance data should be modi�ed by them and no other

entities. Objects are encapsulated from the rest of the program: each object is a container (or capsule)

for its instance variables and instance methods. �ey should only interact via a well-de�ned interface.

9

�is may be accomplished by data/method hiding. Here data/method hiding is the ability to shield the

data/method from external access.

In Java you implement data and method hiding with visibility modi�ers. For the moment, there are

two visibility modi�ers: private and public. Table 1 describes the purpose of these visibility modi�ers.

public private

Variables Violates encapsulation Enforces encapsulation

Methods Service method Support method

Table 1: E�ects of public and private visibility.

5 Getters and Setters
Getter and setter methods get and set the values of instance variables. �ese methods are usually called

get〈Name〉 and set〈Name〉, where 〈Name〉 is the name you get by capitalising the �rst letter of the name of

the instance variable. �e following is a short example.

private double percentage;

public double getPercentage() {
return percentage;

}

public double setPercentage(double newPercentage) {
percentage = newPercentage;

}

Java

�e following are some advantages of using getter and setter methods.

• Restricting the getting and setting of variables with getters and carefully designed setters increases

program robustness. For example, we may disallow attempts to assign impossible face values. We

may handle assignment errors gracefully.

• In particular it helps maintain complex invariants about the object’s instance variables. For example,

in a bank transaction system, the moneys received by Client A from Client B should be equal to

the moneys transferred from Client B to Client A.

• Information hiding also improves �exibility and extendibility. For example, client so�ware that is

unaware of the actual representation of the class cannot depend on the actual representation. By

hiding the information, a change in the internal class representation cannot break client so�ware.

10

6 Scope
�e scope of a variable is where the variable is “visible” in the program. �e scope of variables works as

follows. We’re restricting our attention to formal parameters, variables which are local to a method or

block, and public and private class and instance variables.

parameters: Visible in the whole method.

local variables: Variables which are declared inside a method are visible from their declaration until the

end of the smallest block they’re in. Here a block starts with an opening brace ({) and ends with a

closing brace (}).

public variables: Public class and instance variables are visible in any class. However, the scope excludes

the scopes of formal method paramers or local variables with the same name.

private variables: Public class and instance variables are visible in the class they’re in. However, the

scope excludes the scopes of formal method parameters or local variables with the same name.

Java allows declarations anywhere inside a class/method/block. Redeclaring an instance variable as a

local variable is only allowed in methods. ther variable redeclarations are not allowed.

�e following is an example. For sake of the example, the declaration of the attribute var follows the

de�nition of a method. �is style of declaration should be discouraged because it is much clearer if all

attribues are declared at the start of the class.

11

public class Scope { // START OF BLOCK
// turns on scope of attribute var.

public void overlapping1(int var) { // START OF BLOCK
// turns on (off) scope of parameter (attribute) var.
… // parameter var

} // END OF BLOCK
// turns off (on) scope of parameter (attribute) var.

private int var;

public void overlapping2(int param) { // START OF BLOCK
// turns on scope of parameter param.
…

{ // START OF BLOCK.
…

int var;
// turns on (off) scope of local variable (attribute) var.
…

} // END OF BLOCK
// turns off (on) scope of local variable (attribute) var.

} // END OF BLOCK
// turns off scope of parameter param.

public void nonOverlapping(int par) { // START OF BLOCK
// turns on scope of parameter par
…

} // END OF BLOCK
// turns off scope of parameter par

}

Java

7 Lifetime
Variable lifetime is determined as follows:

Class variable: Class variables are created when their class is created. �ey cease to exist when their class

is no longer needed.

Instance variable: �e lifetime of an instance variable is the same as the lifetime of the object that owns

the instance variable.

Local variable: �e lifetime of a local variable is the same as the lifetime of the block that de�nes the

variable’s scope.

12

Parameter: �e lifetime of the formal parameter of a method is the same as the duration of the (current)

method call.

8 ForWednesday
Study the notes and read Pages 71–76.

9 Acknowledgements
�e material presented in these notes is partially based on [Lewis and Lo�us, 2009].

References
[Lewis and Lo�us, 2009] John Lewis and William Lo�us. Java So�ware Solutions Foundations of

Program Design. Pearson International, 2009.

13

	Introduction
	Classes and Objects
	Anatomy of a Class
	Variable and Method Declarations
	this
	Basic Declarations
	Example
	Constructors

	Encapsulation
	Getters and Setters
	Scope
	Lifetime
	For Wednesday
	Acknowledgements

